Теломерами называют особые концевые районы линейной хромосомной ДНК, состоящие из многократно повторяющихся коротких нуклеотидных последовательностей. В состав теломер входят также многие белки, специфически связывающиеся с теломерными ДНК-повторами. Таким образом, теломеры (так же, как и все другие районы хромосомы эукариот) построены из дезоксинуклеопротеидов, то есть комплексов ДНК с белками.
Существование специальных структур на концах хромосом было окончательно доказано в 1938 году классиками генетики, лауреатами Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо друг от друга они обнаружили, что фрагментация хромосом (под действием рентгеновского облучения) и появление у них дополнительных концов ведут к хромосомным перестройкам и деградации хромосом. В сохранности оставались лишь области хромосом, прилегающие к их естественным концам. Лишенные концевых теломер, хромосомы начинают сливаться с большой частотой, что ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. Г. Мёллер предложил называть их теломерами (от греч. телос — конец и мерос — часть).
В последующие годы выяснилось, что теломеры не только предотвращают деградацию и слияние хромосом (и тем самым поддерживают целостность генома хозяйской клетки), но и, по-видимому, ответственны за прикрепление хромосом к специальной внутриядерной структуре (своеобразному скелету клеточного ядра), называемой ядерным матриксом (рис. 1,2). Таким образом, теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра. Более того, наличие на концах хромосом специальной теломерной ДНК позволяет решить так называемую проблему концевой недорепликации ДНК.
Теломерная ДНК (рис. 3,4) попала в поле зрения молекулярных биологов сравнительно недавно, когда были разработаны эффективные методы определения последовательности нуклеотидов в нуклеиновых кислотах. Первыми объектами исследования были одноклеточные простейшие (ресничная инфузория тетрахимена, в частности), поскольку из-за особенностей строения ядерного и хромосомного аппарата они содержат несколько десятков тысяч очень мелких хромосом и, следовательно, множество теломер в одной клетке (для сравнения: у высших эукариот на клетку приходится менее ста теломер).
Многократно повторяющиеся блоки в теломерной ДНК простейших состоят всего лишь из шести—восьми нуклеотидных остатков. При этом одна цепь ДНК сильно обогащена остатками гуаниловой кислоты (G-богатая цепь; у тетрахимены она построена из блоков TTGGGG (2 тимин- 4 гуанин)), а комплементарная ей цепь ДНК соответственно обогащена остатками цитидиловой кислоты (С-богатая цепь).
У дрожжей повторяющиеся блоки в теломерной ДНК заметно длиннее, чем у простейших, и зачастую не столь регулярные. Каково же было удивление ученых, когда оказалось, что теломерная ДНК человека построена из TTAGGG-блоков (2 тимин-аденин-3 гуанин), то есть отличается от простейших всего лишь одной буквой в повторе. Более того, из TTAGGG-блоков построены теломерные ДНК (вернее, их G-богатые цепи) всех млекопитающих, рептилий, амфибий, птиц и рыб. Столь же универсален теломерный ДНК-повтор у растений: не только у всех наземных растений, но даже у их весьма отдаленных родственников —морских водорослей он представлен последовательностью TTTAGGG (3 тимин-аденин-3 гуанин). Впрочем, удивляться здесь особенно нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит генов), а у всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Правда, из этого общего правила есть редкие исключения. Наиболее известное из них — теломерная ДНК плодовой мухи дрозофилы. Она представлена не короткими повторами, а ретротранспозонами — подвижными генетическими элементами.
Очень важная характеристика теломерных ДНК — их длина. У человека она колеблется от 2 до 20 тыс. пар оснований (т.п.о.), а у некоторых видов мышей может достигать сотен т.п.о.
|