Происходящий в последние годы процесс смены концептуальных парадигм отражает изменение фундаментальных взглядов на живое, его происхождение и эволюцию. Еще совсем недавно молекулярные биологи, опьяненные успехами в изучении нуклеиновых кислот, полагали, что начало жизни на планете Земля совпадает с абиогенным синтезом первой молекулы ДНК (РНК?). Им возражали те, кто по-прежнему воспринимал как аксиому слова Ф. Энгельса о "жизни как способе существования белковых тел" и, соответственно, видел в белке начало всего живого (теория А. Опарина). В последние десятилетия накапливаются данные о том, что не белок и не ДНК/РНК, вероятно, положили начло доклеточным предшественникам современной жизни — гипотетическим пробионтам. Жизнь, что представляется все более правдоподобным в свете современных данных (ср. Mader, 1985; Harold, 1986), эволюционировала на базе динамичной игры малых молекул (органических и неорганических). Это были ионы металлов (Fe2+, Zn2+, Al3+, Ni+, Cu 2+, Co 2+, Mg2+, Ca2+), соединения серы (дисульфиды, полисульфиды), фосфора (ортофосфат, пирофосфат, полифосфаты), азота (особенно NO и N2O), а также небольшие органические молекулы типа аминов (этаноламин, холин, гистамин и др.), аминокислот (особенно, глицин, глутамат, аспартат), углеводородов (например, этилен). Подобная гипотеза, постулируя вторичное возникновение биополимеров (белки, нуклеиновые кислоты, полисахариды) как более тонких регуляторов "игры" малых молекул, находится в соотвествии с данными об эволюционно консервативной природе биологически активных малых молекул, осуществляющих жизненно важные процессы в ныне существующих организмах в свободном (гормоны, феромоны, аттрактанты, репелленты, факторы внутри- и межклеточной коммуникации и др.) или в связанном состоянии (всевозможные кофакторы, активные группы ферментов и др.).
Имеется предположение, что даже функция наследственной передачи признаков, ныне выполняемая нуклеиновыми кислотами, первоначально зависела от "неорганических генов" — матриц для синтеза молекул (вначале даже небелковой природы), построенных на основе алюмосиликатов глины (Mader, 1985). Первые биополимеры могли быть результатом автокаталитических реакций малых молекул: получены сведения об автокаталитическом эффекте пептидной связи, ведущем к спонтанному формированию полипептидов в растворе, содержащем свободные аминокислоты и короткий пептид-затравку (Baksakov, Voeikov, 1996; Voeikov et al., 1996). В современных клетках до сих пор протекают реликтовые процессы: неферментативные взаимодействия малых молекул, а белки-ферменты в некоторых случаях не столько ускоряют, сколько торомозят и регулируют эти процессы (что показано на примере неферментативных реакций хинонов с цитохромами типа с: см. Митрофанов и др., 1991). Имеется общий сценарий "возникновения жизни в облаках", где мельчайшие дождевые капли, озаренные ультрафиолетом первобытного Солнца и поглощающие частицы соединений металлов и неметаллов в ходе пыльных бурь, обеспечивали достаточную суммарную поверхность для фотоиндуцированного гетерогенного катализа и последующего синтеза более сложных органических молекул, поступавших с дождевыми потоками в океан, где жизнь "дозревала" уже в соответствии с Опаринским сценарием "первичного бульона" и "кооцерватных капель" (Harold, 1986; Гусев, Минеева , 1992).
Cреди "колоды карт" эволюционно древних малых молекул, выполняющих роль важных функциональных агентов у разнообразных форм живого, современные биологи уделяют значительное внимание агентам клеточной дифференцировки, гормонам и нейротрансмиттерам, таким как, например 5-окситриптамин (серотонин). Серотонин известен как важный нейромедиатор и гормон у животных, участвующий в восприятии болевых раздражений (и в блокировке болевой чуствительности в экстремальных ситуациях), координации моторной активности, эмоциональном поведении, поддержании ритма сна и бодрствования (наряду с мелатонином, производным серотонина), терморегуляции, а также во многих других процессах. Серотонин регулирует кишечную перистальтику, вызывает сокращение мускулатуры матки, бронхов и других гладкомышечных органов у животных и человека (Громова, 1966; Каменская, 1996).
|