Традиционная парадигма микробиологии об одноклеточности микроорганизмов была подвергнута сомнению в свете данных о сложности структуры микробных колоний, о клеточной дифференциации и координации поведения микробных клеток в составе колоний. Микроорганизмывсе чаще рассматриваются, наподобие клеток многоклеточного организма (Шапиро, 1988; Олескин, 1993; Lyte, 1993), в роли структурных единиц целостных микробных колоний как организмоподобных структур. Поэтому присутствие "гормонов у микроорганизмов предположительно представляет собой форму межклеточной коммуникации и, соответственно, может служить основой для примитивной нервной системы" (Lyte, 1993, p.343).
Тот факт, что серотонин и другие нейромедиаторы оказывают влияние и на нервные клетки мозга, и на микробные колонии, представляет интерес с позиций новой формирующейся микробиологической парадигмы, рассматривающей микроорганизмы как многоклеточные существа и, в частности, сопоставляющей микробную колонию с примитивной нейронной сетью (Lyte, 1993). Помимо эволюционно консервативного характера биологически активных соединений, играющих роль нейромедиаторов у высших животных (норадреналин, серотонин, окись азота и др.) и действующих на развитие, дифференцировку и социальное поведение микроорганизмов, важным фактом является структурное сходство микробной колонии с нейронной сетью. Например, клетки в микробной колонии формируют контакты, напоминающие синапсы, а некоторые клетки отличаются экстраординарной длиной (аналоги аксонов нервных клеток? См. Шапиро, 1988). В этой связи примечательно, что микромолярные концентрации серотонина стимулируют формирование экстраординарно длинных клеток у E. coli (Олескин и др., 1998) — предполагаемых агентов передачи информации от одного участка микробного социума (колонии) к другому.
Статья посвящена "микробной эндокринологии", базирующейся на аналогии между микробными сигнальными молекулами и гормонами — агентами внутриорганизменной коммуникации у многоклеточных животных. Однако необходимо иметь в виду, что в литературе есть и другая интерпретация роли микробных сигнальных агентов. Поскольку для многих из них показано участие в передачи сообщений между микробными клетками, эти вещества сопоставляют с агентами межорганизменной коммуникации у животных — феромонами. Подобно хорошо изученным феромонам насекомых, эволюционно консервативные агенты коммуникации у микроорганизмов передают от одной особи (микробной клетки) к другой такие типовые сообщения, как информацию о доступности питательных субстратов, побуждение к половому контакту, а также стимулы к агрегации и формированию надорганизменных (биосоциальных) структур. Например, глутамин регулирует поведение клеток-швермеров у Proteus mirabilis (Kell et al., 1995).
Таким образом, микробные клетки как бы лежат в основании сразу двух линий биосоциальной эволюции, одна из которых ведет к клеткам и тканям внутри организма (и тогда агенты микробной коммуникации сопоставимы с гормонами, а вся микробная колония — с многоклеточным организмом), а другая — к биосоциальным системам, построенным из целых многоклеточных организмов (в этом случае агенты микробной коммуникации можно уподобить феромонам, а микробную колонию сравнить с биосоциальной системой, скажем, муравьёв).
Эффекты малых молекул на разных уровнях биологической эволюции, включая микробные системы, характеризуют их исследования как одну из "горячих точек" современной биологии. Эти исследования способствуют интеграции биологического и социального знания, стимулируя неизбежный процесс интеграции естественных наук и наук о человеке. В то же время не подлежит сомнению, что биотехнология и медицина смогут не только теоретически осмыслить, но и практически внедрить результаты прогресса микробной эндокринологии.
|