Альтернативный + ища + цуюофе + ол + жиу + ке + ую + бюу + ха + про + бюу + ьцф + ооопс
И вот в чём смысл альтернативного сплайсинга: некоторые, чётко определённые экзоны вырезаются вместе с интронами. И тогда из
Аищалцуюофеьолтжиуекеруюнабюутхаипровбюуньцфыйооопс
Получится:
Альтернативный + ища + цуюофе + ол + жиу + ке + ую + бюу + ха + про + бюу + ьцф + ооопс
Альт + ища + цуюофе + ол + жиуекеруюнабюутхаипровбюуньцфыйооопс
нативный + Аищалцуюофеьолтжиуекерую + бюу + ха + про + бюу + ьцф + ооопс
наивный + Аищалцуюофеьолтжиуекерую + бюутха + про + бюу + ьцф + ооопс
левый + Аища + цуюофеьолтжиу + керуюнабюутхаипро + бюуньцф + ооопс
лев + Аища + цуюофеьолтжиу + керуюнабюутхаипро + бюуньцфыйооопс
В итоге, из одного, казалось бы, бессмысленного слова, получено шесть вполне осмысленных. А если это слово — ген?
Один ген — множество белков
Действительно, путь стыковки экзонов, принадлежащих одному гену, может быть множественным. Некоторые экзоны могут удаляться вместе с интронами. Такой альтернативный сплайсинг приводит к тому, что один и тот же ген может кодировать семейство структурно схожих, но функционально разных белков. На данный момент известное максимальное количество разных белков, которое может кодировать один ген, составляет около 40 000! (Сумма прописью — сорок тысяч). Например, ген дрозофилы, который кодирует один из белков рецептора, аксона за счёт альтернативного сплайсинга может приводить к образованию 38016 различных информационных РНК. Этот ген содержит 95 альтернативных экзонов. Но все ли гены экспрессируются за счёт альтернативного сплайсинга? Согласно текущим знаниям, по крайней мере, 74% генов человека работает с помощью альтернативного сплайсинга!
Теперь самое время задаться вопросом: что такое ген?
Ген (эукариотный) это длинная и преимущественно случайная, не кодирующая последовательность нуклеотидов, в которой расположены участки (экзоны), способные после вырезания из транскрипта этого гена и их объединения в строго определённой очерёдности, кодировать определённую функцию.
Особо отметим, что при альтернативном сплайсинге порядок расположения экзонов не нарушается. В окончательном варианте сплайсированной РНК некоторые экзоны могут присутствовать или отсутствовать, но местами они не меняются. Например, в окончательно сплайсированной РНК экзоны 1–2–3–4–5–6 могут быть в последовательности 2–4–6, но не в последовательностях 4–2–6 или 6–4–2. Таким образом, из одного и того же транскрипта гена, используя разные варианты распознавания, вырезания и соединения разных экзонов можно получить множество разных изоформ белков, у которых будут общими некоторые аминокислотные последовательности, но которые будут отличаться по своим функциональным свойствам. И то, что сначала наивно полагали бессмысленным — интроны, перемежающие гены, на самом деле оказалось весьма эффективным и экономичным способом кодирования множества смыслов за счёт ограниченного числа знаков. Правда, это привело к значительному усложнению правил обнаружения этих смыслов. Путь альтернативного сплайсинга в большой степени определяется регуляторными сигналами клетки, характеризующими её состояние. В ответ на изменение физиологической ситуации из одного и того же гена реализуются разные функции.
Весьма принципиально, что при эволюционном усложнении организмов среднее количество интронов, приходящихся на один ген, возрастает. На основе статистического анализа сделаны выводы, что размер генома коррелирует с общей длиной интронов, содержащихся в гене данного вида; интроны беспозвоночных короче, чем интроны генов человека, а интроны дрожжей короче, чем интроны беспозвоночных. По мере усложнения организмов увеличивается и длина интронов. В общем, в гене суммарная длина интронов может превосходить суммарную длину экзонов в десятки и сотни раз.
Если секвенирование (определение нуклетотидной последовательности, от англ. sequence — последовательность) эукариотных генов привело к ошеломляющему открытию их мозаичной структуры, то массовое секвенирование целых геномов разных организмов привело к результатам просто изумляющим. У мыши, человека у рыбы фугу (рыба шар) количество генов практически одинаково — 30000 — 40000. Что же тогда определяет эволюционную сложность?
Более того, если сравнивать между собой кодирующие последовательности (экзоны) в геномах мыши и человека, то окажется, что они идентичны на 99%! Почему же мы так не похожи на мышей?
Может быть и потому, что несмотря на то, что наши гены похожи на мышиные, у нас альтернативный сплайсинг идёт или по другому пути, или более множественный. Или и то и другое одновременно. Ведь не зря же по мере прогрессивной эволюции среднее количество интронов (а значит, и экзонов), приходящихся на один ген, возрастает? Ведь это расширяет спектр белков, потенциально кодируемых одним геном. Не так ли? И в результате из-за разного альтернативного сплайсинга из почти одних тех же генов получается или мышь, или шимпанзе, или тот, кто в данный момент читает эти строки.
Перейти на страницу: 1 2 3 4 5
|