Прежде чем говорить о гидридах инертных газов, давайте вернёмся к самому началу, а именно — к инертности благородных газов. Несмотря на всё сказанное выше, элементы главной подгруппы восьмой группы вполне оправдывают своё групповое название. И человек использует их естественную инертность, а не вынужденную реакционную способность.
Например, физико-химики любят применять такой метод: заморозить смесь инертного газа с молекулами какого-либо вещества. Остыв до температуры между 4 и 20К, эти молекулы оказываются в изоляции в так называемой матрице твёрдого инертного газа. Далее можно действовать светом или ионизирующим излучением и смотреть, что за промежуточные частицы получаются. В других условиях такие частицы не видны: они слишком быстро вступают в реакции. А с инертным газом, как считалось в течение многих лет, прореагировать очень непросто. Такими исследованиями на протяжении многих лет занимались в наших лабораториях — в Научно-исследовательском физико-химическом институте им. Л.Я. Карпова, а затем и в Институте синтетических полимерных материалов РАН, причём использование матриц с различными физическими свойствами (аргона, криптона, ксенона) рассказало много нового и интересного о влиянии окружения на радиационно-химические превращения изолированных молекул. Но это — тема для отдельной статьи. Для нашей же истории важно, что такая матричная изоляция неожиданно для всех привела в совершенно новую область химии инертных газов. И случилось это в результате одной встречи на международной конференции по матричной изоляции в США, которая произошла в 1995 году. Именно тогда научный мир впервые узнал о существовании новых необычных соединений ксенона и криптона.
|