Теория биохимической эволюции.
Исторически эта теория связывается с именем замечательного русского ученого А.И. Опарина, высказавшего мнение, что в условиях первичной атмосферы Земли, значительно отличающейся от нынешней, мог происходить синтез всех необходимых для зарождения жизни веществ-предшественников. Считается, что первичная атмосфера состояла преимущественно из аммиака, воды, метана, окиси и двуокиси углерода. Отсутствие кислорода придавало ей восстановительные свойства. В таких условиях органические вещества могли создаваться гораздо проще и могли сохраняться, не претерпевая распада длительное время. Опарин полагал, что сложные вещества могли синтезироваться из более простых в условиях океана. Необходимая для реакций энергия приносилась солнечной радиацией, т. к. защитного озонового экрана ещё не существовало; также синтез имел место в условиях грозовых разрядов. Разнообразие находившихся в океане простых соединений и большие масштабы времени позволяют предположить возможность накопления в океане большого количества органики, образовавшей „первичный бульон“, в котором могла зародиться жизнь. Блестящее подтверждение эта теория нашла в экспериментах Стэнли Миллера, проведенных в 1953 году: через смесь газов, моделирующую первичную атмосферу, пропускались мощные электроразряды. В результате удалось синтезировать ряд АК, аденин, рибозу, другие простые сахара… В схожем опыте Орджелом были получены короткие НК (олигонуклеотиды). В результате этих исследований стало понятно, что основные органические вещества-мономеры, необходимые для возникновения полимерных молекул НК и белков, действительно могли быть химически получены в условиях пребиотического мира, т. е. мира, ещё лишённого жизни. Но главный вопрос — механизм перехода от неживого к живому — теория Опарина всё же оставляет открытым. Предполагается, это выглядело следующим образом. Главная роль принадлежала белкам — они образовывали коллоидные гидрофильные комплексы с молекулами окружающей их воды. Эти комплексы формировали своеобразные мицеллы. Слияние таких комплексов друг с другом приводило к их отделению от водной среды, что получило название коацервации. Капли-коацерваты могли обмениваться веществами с окружающей средой и накапливать различные соединения. Различие состава коацерватов открывало возможности для биохимического естественного отбора. В самих каплях происходили дальнейшие химические превращения попавших туда веществ. На границе капель с внешней средой выстраивались молекулы жиров (липиды), образуя примитивную мембрану, повышающую стабильность всей системы. При включении в коацерват или при образовании внутри него первой молекулы, способной к самовоспроизведению тем или иным путём, появлялась первая клеткоподобная структура. Рост размеров коацерватов и их деление, ещё статистическое, могло привести к образованию идентичных копий коацерватов. Они также поглощали компоненты окружающей среды и процесс продолжался. Таким путём мог возникнуть первый гетеротрофный организм, использовавший для питания органические вещества „первичного бульона“.
Отмечая малую вероятность протекания всех этих процессов в таком сложном и целенаправленном порядке, Фред Хойл сказал, что теория эта „столь же нелепа, как и предположение о возможности сборки “Боинга 747„ ураганом, пронёсшимся над мусорной свалкой“. Действительно, события эти маловероятны, если рассматривать их в отрыве друг от друга и считать взаимно независимыми. Однако последние исследования показывают, что этот подход не является правильным, и в сложных полимолекулярных системах многие процессы синергетически детерминированы. В этом случае образование живого организма становится неизбежным, после прохождения определённого этапа.
Перейти на страницу: 1 2 3 4
|