Использование лазеров в самых разнообразных отраслях науки и техники общеизвестно. Но только специалисты знают, какое множество задач необходимо решить, прежде чем прибор будет удовлетворять необходимым эксплуатационным требованиям. Широкое распространение получили газовые лазеры, среди которых особое место занимают СО2-лазеры непрерывного действия. Для создания активной среды (как говорят, "накачки") в СО2-лазерах используют электрический тлеющий разряд.
Рис.1.Схема СО2-лазера небольшой мощности с диффузным охлаждением: 1 - плазма; 2- кольцевые электроды; 3 - инфракрасный луч; 4 - полупрозрачные зеркала из ZnSe или AsGa; 5 - охлаждение; 6 - отражатель
Простейшая схема СО2-лазера представлена на рис. 1. Линейная молекула СО2, возбужденная разрядом, совершает колебательные движения. При переходе из одного колебательного состояния в другое излучается лазерный квант. В результате генерируется энергия излучения с частотой в глубокой инфракрасной области 10,6 мкм. Генерируемый лазером невидимый инфракрасный луч обладает уникальным свойством проникать сквозь туман, облака, песчаные бури. Это позволило создать принципиально новый тип приборов космической и авиационной связи, систем наведения и локации, приборов ночного видения и т. п. Кроме того, при взаимодействии такого луча с материалом возможно достижение фантастических температур порядка 4300-4500оС (температура плавления самого тугоплавкого металла - вольфрама - 3380оС).
Именно на основе мощных СО2-лазеров проточного типа воплощена в реальность фантастическая идея гиперболоида инженера Гарина - созданы промышленные установки для резки тугоплавких материалов. Однако по мере изучения физики разряда и совершенствования приборов выяснилось, что создание надежных и долговечных СО2-лазеров имеет, казалось бы, непреодолимые ограничения физического и химического характера. В жестких условиях электрического разряда рабочие молекулы углекислого газа распадаются, диссоциируя по реакции
Происходит деградация рабочей газовой среды, нарушается устойчивость разряда, падает мощность, и прибор перестает излучать. Наряду с этой кардинальной проблемой возникают проблемы стабильности тлеющего разряда, устойчивости материалов конструкций в плазме и т. п. Например, катод, традиционно выполненный из металлов (как правило, из никельсодержащих сплавов, иногда с добавками металлов платиновой группы), испаряясь, оседает на зеркалах, волноводе и препятствует выводу излучения.
С момента начала разработок СО2-лазеров (1964) физики и химики ищут пути преодоления этих и многих других материаловедческих проблем квантовой электроники. В частности, для предотвращения катастрофической деградации углекислого газа используют систему прокачки с постоянным обновлением среды, стали применять дополнительные системы регенерации, где в качестве катализаторов применяют металлы Pt-группы. Однако использование дополнительных систем усложняет конструкцию, делает ее громоздкой и ненадежной, а в случае отпаянных СО2-лазеров (которые из-за своей миниатюрности в зарубежной литературе получил название the hand-held laser) для космической и авиационной связи оказывается просто неприемлемым.
В 1983 году кафедра физической химии Уральского государственного университета была подключена к работе над государственной программой создания принципиально нового прибора для космической связи - отпаянного волноводного СО2-лазера. Первоначально перед нами, химиками, была поставлена конкретная задача - разработать миниатюрный каталитический блок, который можно было бы разместить внутри hand-held laser, не нарушая его оптической системы.
Для поиска катализаторов были выбраны нестехиометрические оксиды 3d-переходных (Mn, Co, Ni, Cu) редкоземельных (La, Pr, Nd) металлов. В этом ряду соединений особое место занимают манганаты, кобальтаты и купраты лантана с общей формулой La1-x Mex MO3±y (Me = Ca,Sr,Ba; M = Mn,Co,Cu). Эти соединения обладают перовскитоподобной структурой, которая является очень лабильной и по мере изменения состава, температуры и давления кислорода в газовой фазе может искажаться. Элементарная перовскитоподобная кристаллическая ячейка с возможными видами искажений представлена на рис. 2. Наличие в кислородных октаэдрах ионов кобальта и марганца, склонных к кооперативным взаимодействиям, к изменению степени окисления и различным магнитным спиновым состояниям, делают эти объекты уникальными по сочетанию магнитных, электрических и каталитических свойств.
Рис. 2. Различные виды искажения перовскитоподобной структуры
Эти оксиды склонны к атомной нестехиометрии, которая существенным образом влияет на все структурно-чувствительные свойства. Например, частичная замена лантана на щелочноземельный металл приводит к появлению дефектов акцепторного типа Me'La и электронных дырок в зоне проводимости. Изменение давления кислорода в окружающей атмосфере в процессе синтеза или термообработки материала вызывает нарушение кислородной стехиометрии (возникают или исчезают кислородные вакансии V''O , являющиеся донорами электронов). Эти особенности атомной и электронной структуры открывают, с одной стороны, огромные возможности для сознательного варьирования электромагнитных и каталитических свойств материалов на основе данных оксидов, но, с другой - создают дополнительные технологические проблемы, сказывающиеся на невоспроизводимости свойств и браке изделий из этих материалов.
Перейти на страницу: 1 2 3
|