Специальные исследования были проведены в ВИРе на 6 образцах стародавних мягких пшениц - Банатках. В течение трех лет (1988-89, 89-90,90-91) образцы высевались на Кубанской ОС ВИР. Контроль за составом генотипов осуществлялся по спектрам глиадинов. Было показано, что у образца к-4816 в течение трех лет концентрация доминирующего генотипа «а» снизилась с 78% до 52%, а генотипа «в» повысилась с 6 до 33%. У образца к-10230 концентрация доминирующего генотипа «а» снизилась с 84% до 57%, а генотипа «б» повысилась с 7% до 31%. Таким образом, через три года репродукции генотипный состав образцов несколько изменился [35,36].
Генетические коллекции - особо ценный материал, сохранность которого сопряжена с многими методическими трудностями. Белковые маркеры используются в ВИРе для контроля за стабильностью генотипов растений, представляющих генетические линии, для идентификации чужеродных транслокаций, мутаций, изменения числа и состава хромосом. Так сравнительный анализ спектров глиадинов соротов-оригиналов мягкой пшеницы с транслокациями и замещениями пшеничной хромосомы на ржаную (1B/1R) и их репродукций показал, что что у ряда репродуцированных образцов встречаются генотипы с отсутствием глиадиновых маркеров короткого плеча хромосомы 1RS ржи. Эти и многие другие примеры указывают на необходимость контроля чистоты и целостности коллекций в процессе их репродукции.
Любой хранитель (собственник) генетических ресурсов заинтересован обеспечить как охрану своих авторских прав на исходный материал, источники и доноры, так и официальное признание участия этого генетического материала в создании тех или иных сортов в своей стране и за рубежом. ММ оказывают здесь реальную помощь, обеспечивая независимую информацию о происхождении и степени родства генетического материала сравниваемых образцов. В ВИРе накоплен большой опыт использования белковых маркеров в решении спорных вопросов авторства сортов, их оригинальности, подлинности, чистоты, природы исходного материала и т.д., когда использование набора традиционных методов, в том числе и грунт контроля, не давало желаемого результата [4,19]. Эффективность такой работы во многом обеспечивается наличием в ВИР каталогов белковых формул и баз данных этих формул с информацией о сотнях сортов, в том числе давно снятых с районирования, а также о многих образцах различного происхождения, хранящихся в коллекции (табл.2). Важно подчеркнуть, что даже не являясь тестом, который может быть официально признан как единственный аргумент, молекулярный метод обеспечивает предварительную, независимую и оперативную информацию.
Использование молекулярных маркеров в селекции. Белковые маркеры на протяжении последних десятилетий используются в селекционных программах для решения многих вопросов (табл. 1). Этому посвящено большое число отечественных и зарубежных публикаций [6,7]. В ВИРе проламиновые спектры, в частности, используются для отбора определенных генотипов (по соответствующим типам спектра) при селекции различных культур. Так в ходе селекции сорта озимой пшеницы «Тюменская ранняя» с помощью спектров глиадина формировался «желаемый» генотипный состав создаваемого сорта (НИИСХ Северного Зауралья).
Весьма наглядным является пример связи между белковой формулой генотипов у сортов озимой мягкой пшеницы и устойчивостью этих генотипов (сортов, имеющих данные генотипы) к низким температурам. Одним из основных свойств, которым должна обладать озимая мягкая пшеница является зимостойкость. Из характеристик, обуславливающих зимостойкость, наиболее изучена морозостойкость. Последняя контролируется многими генами, локализованными в разных хромосомах. Это, естественно, затрудняет исследование признака зимостойкости, его маркирование и соответствующую селекцию. По данным А.А.Созинова и сотрудников [7] сорта озимой пшеницы, в составе спектров глиадина которых присутствуют определенные блоки компонентов, обладают повышенной зимостойкостью. Согласно биохимической номенклатуре компонентов глиадина, разработанной в ВИРе это соответствует компонентам: г2щ78 (блок Gld 1A1), г1щ67 (блок Gld 1A2), г13щ5819 10 (блок Gld 1D5), 62467в1 (блок Gld 6A3) и 657в245 (блок Gld 6D2). Исследования были проведены на большом числе сортов озимых мягких пшениц (около 300) разных экологических групп (групп селекции) [36]. Морозостойкость растений определялась методом прямого промораживания в посевных ящиках. Дифференциирующими температурами были -15С и -18С. Действительно, большинство сортов с высокой и повышенной морозостойкостью характеризуется указанными выше блоками (группами) компонентов глиадина. Так на большом числе сортов показано, что наличие генотипа с компонентами 62467 и щБ^ 10 придает сорту повышенную морозостойкость (табл. 4) [36]. Дело, однако, усложняется в ходе анализа генотип-ного состава сортов. Как правило, не удается обеспечить 100% концентрацию выдающихся генотипов по одному признаку и селекционеры вынуждены «разбавлять» сорт другими генотипами, обеспечивающими другие характеристики, но, обладающими меньшей зимостойкостью. Особенно хорошо это заметно при анализе родословных некоторых наших отечественных сортов озимой мягкой пшеницы. В родословной озимых мягких пшениц одесской селекции на первом этапе присутствует морозостойкий сорт Гостианум 237 (группа морозостойкости 1). Выяснено, что если после последующих скрещиваний полученные сорта по проламиновым спектрам были близки к Гостианум 237 (в частности, по наличию и частоте встречаемости генотипов с компонентами 62467 и компонентами 8Х9 10 в щ-зоне), они также обладали хорошей морозостойкостью. Таким образом, спектры глиадина можно использовать для определения потенциальной морозостойкости сортов озимой мягкой пшницы в пределах определенных групп селекции. При этом необходимо знать белковую формулу генотипа (генотипов) морозостойкого сорта, который явился источником данного признака в ходе селекции. Это позволит вести контроль за включением его генетического материала во вновь создаваемые сорта.
Перейти на страницу: 2 3 4 5 6 7 8 9
|