Расчет температурного поля и массопереноса углерода при выращивании монокристаллов алмаза в расплаве металлов

Рис. 1. Электрическая и тепловая схемы реакционной ячейки (1/2 часть осевого сечения):

1, 15 — токоподводы; 2, 14 — электрофокусы; 3, 5, 11, 13 — теплоразводящие диски; 4, 12 — верхний и нижний нагревательные диски; 7, 10 — электро- и теплоизоляционные втулки; 8 — трубчатый нагреватель; 6 — источник углерода; 9 — металл-растворитель

роста монокристалла алмаза зависит от величины вышеуказанного перепада температуры.

Эффективность схемы нагрева реакционной ячейки можно оценить по величине плотности диффузионного потока углерода, направленного на кристалл-затравку. Расчет стационарного теплового поля и поля концентрации углерода в реакционной ячейке заключается в решении при соответствующих граничных условиях дифференциального уравнения второго порядка (1) в частных производных:

где Цх, у, z) — в зависимости от типа решаемой задачи коэффициент электропроводности, или теплопроводности, или диффузии; U (х, у, z) — потенциальная функция (электрическое напряжение, температура или концентрация углерода); W(x, у, z) — удельная мощность источников электрического тока, тепла или углерода.

Ввиду осевой симметрии ячейки при расчете электрического и теплового полей это уравнение удобно записать в цилиндрических координатах:

Представление решения уравнений электропроводности, теплопроводности или уравнения диффузии в виде ряда или интеграла практически невозможно ввиду сложности конфигурации ростовой ячейки и задания граничных условий, а также большого количества составляющих элементов. Для расчета теплового поля ростовой ячейки применялся метод конечных элементов в виде метода конечных разностей [7]. Если затравка будет помещена в центре подложки, то диффузионную задачу можно решать тоже как двумерную (осесимметричную); при расположении еще одной затравки на периферии подложки, диффузионную задачу уже нужно решать как трехмерную; в этом случае количество уравнений возрастает на порядок. Для решения системы уравнений нами был использован метод Гаусса—Зейделя [8].

На начальном этапе расчета теплового поля ячейку роста кристаллов рассматривали с минимально необходимой степенью детализации, и определяли граничные условия для системы, а затем для этой области искали решение тепловой задачи с более высокой степенью детализации. Во всех вариантах расчета температуру на затравочном кристалле в начальный момент синтеза принимали постоянной и равной 1420 ± 20 °С. В каждом варианте расчета путем ряда приближений следовало подбирать напряжение электрического тока, обеспечивающее вышеуказанную температуру на затравке.

Расчет температурного поля в ячейке роста и распределения температуры в сплаве-растворителе позволил решить задачу диффузионного массопереноса углерода; при этом в качестве граничных условий брали значения растворимости углерода на нижней и верхней поверхностях металла-растворителя при температурах, определенных на предыдущем этапе решения задачи. Плотность диффузионного потока / можно рассчитать как:

Перейти на страницу:
1 2 3 4

 

Рукокрылые

Рукокрылые единственные из зверей овладели истинным, машущим полётом. Происхождения древнего: миллионов 60 – 70 назад ,у каких – то первобытных древесных насекомоядных развились сначала летательные перепонки по бокам тела, которые затем были преобразованы эволюцией в настоящие машущие крылья.

Селекция

Примитивная селекция растений возникла одновременно с земледелием. Начав возделывать растения, человек стал отбирать, и размножать лучшие из них. Многие растения возделывались за 10 тысяч лет до нашей эры. Селекционеры создали прекрасные сорта плодовых растений, винограда, бахчевых культур.

Синапсы

Простейшая реакция нервной системы на внешний раздражитель - это рефлекс. Прежде всего, рассмотрим строение и физиологию структурной элементарной единицы нервной ткани животных и человека - нейрона. Функциональные и основные свойства нейрона определяются его способностью к возбуждению и самовозбуждению.